Total Synthesis of (+)- β -Himachalene

by Tse-Lok Ho*1) and Rong-Jie Chein

Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, Republic of China (e-mail: tlho@yahoo.com)

An enantioselective synthesis of (+)- β -himachalene (2) was accomplished starting from (1S,2R)-1,2-epoxy-p-menth-8-ene (3) in 15 or 16 steps with an overall yield of ca. 6% (*Schemes 3*, 5, and 6). Key transformations include an *Ireland–Claisen* rearrangement, a *Corey* oxidative cyclization, and a ring expansion.

We continue to hold an intense interest in the employment of abundant chiral monoterpenes as building blocks for synthesis [1]. When we investigated the synthesis of furodysin [2] and furodysinin [3] from (1S,2R)-1,2-epoxy-p-menth-8-ene (3) via a hexalone intermediate, we noticed that natural α -himachalene (1) and/or β -himachalene (2) may also be accessible from such an intermediate by a ring-expansion protocol (*Scheme 1*).

The himachalenes are found in several cedar woods, e.g., Cedrus deodara Loud. [4], Cedrus atlantica [5], and Cedrus libani [5]. According to a biogenetic consideration [4][6] that correlates the himachalenes with a precursor of longifolene, the absolute

Current address: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Rd., Shanghai 200032, China

configurations of these bicyclic sesquiterpenes should be as shown in 1 and 2. The chiral epoxymenthene 3 happens to possess the correct absolute configuration at the critical stereogenic centers for elaboration of the himachalenes.

Several syntheses of the himachalenes have been completed, α -himachalene by using an intramolecular Diels-Alder reaction as the key step [7–9], β -himachalene based on a [2+2] photocycloaddition [10] or a homo-Cope rearrangement [11], and both isomers on an intramolecular Diels-Alder route [12]. Except for the report of $Evans\ et\ al.$, all other syntheses led to racemic product(s). Our approach starting from a natural chiral terpene necessarily is enantioselective.

Our first retrosynthetic analysis is depicted in *Scheme 2* and an attempt of its realization is outlined in *Scheme 3*. Menthadienol **4** can be prepared from **3** by epoxide-ring opening either with Me₂NH [13] or PhSeNa [14], followed by oxidative elimination. After reaching **7b** via **5**, **6**, and **7a**, further progress was thwarted in its regioselective cleavage. Such reagents as MeCOMs [15], Ac₂O/BF₃·OEt₂ [16] were totally ineffective. A modification starting from **5** via **8–10** (*Scheme 4*) that was directed toward **1**, relying on a fragmentation process, was also abandoned due to unsuccessful dimethylation of **11** to **12**.

Scheme 2. Retrosynthetic Analysis of 1 and 2

Scheme 3. Attempted Cyclopropanation Route to 1/2

a) 1. Me₂NH, 159°, 18 h; 2. H₂O₂, 150–180°; 75%. *b*) 1. NaH, THF, 25°, 30 min; PhSOCHCH₂, KH(cat.), 25°, 3 h; 2. decalin, 200°, 12 h. *c*) *Swern oxidation*. d) (Me₃SO)I, NaH, DMSO, 25°, 5 h, 55°, 2 d. *e*) Me₃CCH₂ONa, THF, MeI, 60°, 12 h.

It is evident that a way to overcome the obstacle is to introduce the geminal-dimethyl at an earlier stage. Accordingly, we pursued a route involving an *Ireland–Claisen* rearrangement of **13** (*Scheme 5*). The acid **14** was homologated in 4 steps to

Scheme 4. Modification of the Cyclopropanation Route to 1

a) [VO(acac)₂], 'BuOOH, $0^{\circ} \rightarrow 25^{\circ}$, 13 h. b) Dess–Martin oxidation. c) MsCl, Et₃N, 0° , 3 h. d) 1. NaBH₄, MeOH, 25° , 2 h; 2. Simmons–Smith reaction.

afford an aldehyde, with a plan to close the seven-membered ring by an intramolecular ene reaction. However, a disappointing result emerged, as products with a hydrindene skeleton were generated.

To push the synthesis forward, we converted **14** to **16** by a reaction sequence involving LiAlH₄ reduction to **15**, pyridinium chlorochromate (PCC) oxidation, and treatment with TsOH in refluxing benzene [17]. While a selective cyclopropanation also was found to be problematic, we were forced to abandon the effort of synthesizing **1**. The change of target to **2** involved a different operation that involved deconjugation of **16** and a ring expansion of **17b**, the latter by a BF₃-catalyzed reaction with Me₃-SiCHN₂ [18]. This last step was surprisingly regioselective, providing products solely from migration of the methylene group. With **18a** and **18b** in hand and a combined 65.3% yield (17.2% +48.1%), we could complete a synthesis of (+)- β -himachalene (**2**). Direct treatment of the product mixture **18a/18b** with Bu₄NF in MeCN gave **18a** in 58.5% yield. Subsequently, **18a** was reduced with NaBH₄, mesylated, and reduced with Li in liquid ammonia to furnish **2**.

The nonstereoselective borohydride reduction of **18a** prompted us to develop an alternative method to transform the major product **18b** of the ring expansion to (+)- β -himachalene. In the event, **18b** was subjected to borohydride reduction to afford a single product **19**. The bulky Me₃Si group provided stereocontrol for the reduction. The *cis-a*-silylcyloheptenol derivative **19** underwent *syn*-elimination on treatment with KH [19], and the resulting triene **20** was partially hydrogenated to afford **2** (*Scheme* 6).

In conclusion, we have achieved a total synthesis of (+)- β -himachalene (2) from (1S,2R)-1,2-epoxy-p-menth-8-ene (3) in 15 or 16 steps and ca. 6% overall yield.

This research was generously supported by *National Science Council*, Republic of China. We also thank *B. J. Kane* of *Glidco Organics*, USA, for a generous supply of **3**.

Scheme 5. Total Synthesis of 2

a) Isobutyric anhydride, Et₃N, N,N-dimethylpyridin-4-amine (DMAP; cat.), CH₂Cl₂, 25°, 2 d; 99%. b) Lithium diisopropylamide (LDA), THF, -78° , 1 h, -40° , 30 min; Me₃SiCl, $-78^\circ \rightarrow 25^\circ$; PhMe, reflux, 36 h; 68%. c) LiAlH₄, THF, reflux, 5 h; 90%. d) pyridinium chlorochromate (PCC), CH₂Cl₂, r.t., 24 h; TsOH, benzene, reflux, 1.5 h, 44.1%. e) 1. Ethylene glycol, TsOH(cat.), Dean–Stark, reflux, 24 h, 92.1% of **17a**; 2. 35% CF₃COOH/H₂O, CH₂Cl₂, $10-20^\circ$, 2 d, 98.8% of **17b**. f) Me₂SiCHN₂, BF₃·OEt₂, CH₂Cl₂, -40° , 2.5 h; 65.3%. g) Bu₄NF, MeCN, r.t., 3 h, 58.5%. h) 1. NaBH₄, MeOH, 0° , 1 h. 2. MsCl, pyridine, DMAP(cat.), $0^\circ \rightarrow 25^\circ$, 6 h; 3. Li, NH₃(l), -78° , 1 h, 44.9% (3 steps).

Scheme 6

a) NaBH₄, EtOH, 25°, 1.5 d; 86.9%. b) KH, THF, 25°, 24 h; 72.3%. c) CoCl₂·6H₂O, NaBH₄, EtOH, 25°, 24 h; 72.6%.

Experimental Part

General. For drying org. solns. during workup, Na₂SO₄ was used. Column chromatography (CC): *Merck* silica gel (63–200 mesh). TLC: *Merck* silica gel 60 F_{254} plates. M.p.: uncorrected; *Laboratory Devices*. [α]_D: CHCl₃ soln. at 25°. IR Spectra: *Bio-Rad FTS* 165; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR Spectra: *Varian Unity-300*; CDCl₃ unless otherwise indicated; δ in ppm, J in Hz. EI-MS: *Trio-2000* and *Jeol SX-102A*; ionization potential 70 eV; in m/z.

(1S,4R)-p-Mentha-2,8-dien-1-ol (=(1S,4R)-1-Methyl-4-(1-methylethenyl)cyclohex-2-en-1-ol; **4**). Limonene oxide (**3**; 5.0 g, 32.89 mmol) was mixed with 40% aq. Me₂NH soln. (7.4 g, 164.44 mmol) in an autoclave and heated at 150° for 18 h. After removing excess Me₂NH, the cooled mixture was stirred with 30% H_2O_2 soln. (5 ml) at r.t. during 18 h. A trace of 5% Pd/C was used to decompose any remaining H_2O_2 , and the liquid was filtered and placed in a distillation vessel. Gradual heating to 150° then 180° produced **4** which was purified by CC (silica gel): **4** (3.5 g, 75%). [α]_D=+63.9 (α =0.325, CHCl₃). IR:

3650-3000, 2943, 2905, 2880. ¹H-NMR: 1.29(s, 3 H); 1.40-1.65(m, 4 H); 1.73(s, 3 H); 1.82(m, 1 H); 2.65(m, 1 H); 4.73(s, 1 H); 4.77(s, 1 H); 5.66(d, J=10.0, 1 H); 5.68(d, J=10.0, 1 H). ¹³C-NMR: 20.8(q); 24.9(t); 29.4(q); 36.7(t); 43.4(d); 67.5(s); 110.6(t); 132.1(t); 133.9(t); 148.1(s).

(2R,4aR,8aS)-1,2,3,4,4a,5,6,8a-Octahydro-7-methyl-4-methylenenaphthalen-2-ol (**5**). To a stirred suspension of NaH (1.06 g, 26.5 mmol) in dry THF (30 ml) were added a soln. of **4** (4.0 g, 26.3 mmol) in THF (30 ml), and after 30 min, phenyl vinyl sulfoxide (8.0 g, 52.6 mmol), followed by a small amount of KH. After 3 h, moist Et₂O was introduced, and the mixture was washed with H₂O and brine, dried, and evaporated. The residue was heated with NaHCO₃ in decalin at 200° for 20 h, cooled, and diluted with Et₂O. After washing with H₂O, drying, and evaporation, the residue was subjected to CC: **5** (2.52 g, 53.8%). M.p. 75°. [α]_D = -10.39 (c = 1, CHCl₃). IR: 3230, 3073, 2925, 1645, 1430, 1325, 1240, 1180, 1055, 1008, 935, 885, 849, 812, 711. ¹H-NMR: 1.34–1.45 (m, 3 H); 1.55 (s, 3 H); 1.62–1.66 (m, 1 H); 1.73–1.82 (m, 1 H); 1.88–1.95 (m, 1 H); 2.05–2.11 (m, 1 H); 2.15–2.17 (m, 1 H); 2.26–2.36 (m, 3 H); 3.88–3.90 (m, 1 H); 4.66 (s, 1 H); 4.82 (s, 1 H); 5.21 (br. s 1 H)). ¹³C-NMR: 23.6 (g); 23.65 (g); 30.2 (g); 32.3 (g); 36.0 (g); 39.0 (g); 42.2 (g); 67.0 (g); 111.7 (g); 125.3 (g); 133.6 (g); 148.3 (g). EI-MS: 178 (100, g) g), 162 (95), 145 (90). HR-MS: 178.1361 (g), g)-*; calc. 178.1358).

(4aR,8aS)-4a,5,6,8a-Tetrahydro-4,7-dimethylnaphthalen-2(1H)-one (6). A soln. of **5** (450 mg, 2.52 mmol) in CH₂Cl₂ (3 ml) was added *via* a syringe into a stirred reagent prepared from oxalyl chloride (645 mg, 5 mmol) in CH₂Cl₂ (10 ml) and DMSO (948 mg, 12 mmol) in CH₂Cl₂ (3 ml) at -78° . After 30 min, Et₃N was added. The cooling bath was removed after 5 min., and the reaction was quenched with H₂O. The product was extracted with CH₂Cl₂, the extract dried and evaporated, and the residue subjected to CC: **6** (410 mg, 92%). M.p. 75°. [a]_D=+3.23 (c=1, CHCl₃). IR: 2929, 2724, 1668, 1627, 1432, 1379, 1302, 1262. ¹H-NMR: 1.63 (s, 3 H); 1.53-1.59 (m, 1 H); 1.77-1.92 (m, 1 H); 2.02 (s, 3 H); 2.07-2.21 (m, 3 H); 2.24-2.26 (m, 1 H); 2.30-2.32 (m, 1 H); 2.57-2.61 (m, 1 H); 5.21 (br. s 1 H)). ¹³C-NMR: 22.5 (q); 22.6 (t); 23.4 (q); 30.6 (t); 34.7 (d); 39.6 (d); 40.1 (t); 123.9 (d); 126.4 (d); 134.4 (s); 164.4 (s); 198.6 (s). EI-MS: 176 (99.5, M^{++}), 162 (100), 150 (70). HR-MS: 176.1205 (M^{+} , C₁₂H₁₆O⁺⁺; calc. 176.1201).

(3S,4S,4aR,8aS)-4a,5,6,8a-Tetrahydro-4,7-dimethyl-3,4-methylenennaphthalen-2(1H)-one (= (1aS, 3aS,7aR,7bS)-1,1a,3,3a,6,7,7a,7b-Octahydro-5,7b-dimethyl-2H-cyclopropa[a]naphthalen-2-one; **7a**). A soln. of **6** (50 mg, 0.28 mmol) in DMSO (5 ml) was added to the ylide derived from (Me₃SO)I (300 mg, 1.36 mmol) and NaH (50 mg; 60% suspension degreased by hexane) in DMSO (5 ml). After stirring at r.t. for 10 h, the mixture was heated at 55° for 2 d. The cooled mixture was poured into ice/H₂O (10 ml) and extracted with Et₂O. The combined org. extract was washed with H₂O, dried, and evaporated. CC gave **7a** (40 mg, 74%). [α]_D = +82.04 (α =1.78, CHCl₃). IR: 2962, 2921, 2869, 2360, 1683, 1540, 1506, 1454, 1241. H-NMR: 0.86 (α , α =10.0, 1 H); 1.18 (α =1, 3 H); 1.16–1.19 (α =1, 1 H); 1.43 (α =1, 4, 4, 1 H); 1.56–1.58 (α =1, 1 H); 1.60 (α =1, 3 H); 1.79–2.00 (α =1, 5 H); 1.98–2.33 (α =2, 2 H); 5.29 (α =3, 3, 5 (α); 39.7 (α =1, 124.5 (α =1, 133.5 (α); 208.6 (α =1.48). EI-MS: 190 (5, α =1, 97 (45), 85 (70), 83 (55), 71 (100), 70 (44), 69 (63).

(1R,3R,4aS,8aR)-3,4,4a,7,8,8a-Hexahydro-6-methylspiro [naphthalene-1(2H)-2'-oxiran]-3-ol (8). To a soln. of **5** (500 mg, 2.80 mmol) and [VO(acac)₂] (= bis(pentane-2,4-dionato- $\kappa O,\kappa O'$) oxovanadium; 30 mg, 0.11 mmol) in CH₂Cl₂ (20 ml) was slowly added 2.7m 'BuOOH (in PhMe (3.0 ml, 8.10 mmol) at 0° under N₂ (green \rightarrow dark red mixture). The soln. was allowed to warm to r.t. and stirred for 13 h. After addition of aq. Na₂SO₃ soln., the mixture was extracted with CH₂Cl₂, the combined extract washed with brine, dried, and evaporated, and the residue subjected to CC (AcOEt/hexane 1:9): **8** (450 mg, 82.6%). IR: 2926, 2888, 2831, 2719, 1645, 1426, 1307, 1185, 1010, 928, 770, 736. ¹H-NMR: 1.26–1.28 (m, 3 H); 1.39–1.61 (m, 3 H); 1.53 (s, 3 H); 1.75–1.92 (m, 3 H); 2.03 (dd, J =15.0, 3.0, 1 H); 2.44 (s, 2 H); 2.58–2.72 (m, 1 H); 4.02 (d, J =2.7, 1 H); 5.26 (d, J =3.9, 1 H). ¹³C-NMR: 21.2 (t); 23.3 (q); 28.3 (d); 30.2 (t); 34.7 (t); 34.8 (t); 40.7 (d); 50.1 (t); 59.8 (s); 66.8 (d); 125.0 (d); 133.0 (s). EI-MS: 194 (5, d), 176 (48), 163 (56), 145 (98), 131 (46), 117 (38), 107 (32), 105 (67), 91 (77), 79 (56), 77 (42), 43 (80), 41 (100), 39 (73), 32 (56). HR-MS: 194.1310 (d)+ c0. c1. c1. c2. c3. c3. c4. c3. c3. c4. c3. c4. c5. c5. c6. c6. c7. c7

(4aR,8aS)-4a,5,6,8a-Tetrahydro-4-hydroxymethyl)-7-methylnaphthalen-2(1H)-one (**9a**). A soln. of **8** (400 mg, 2.1 mmol) and *Dess–Martin* periodinane (1.30 g, 3.1 mmol) in CH₂Cl₂ (40 ml) was stirred at r.t. under N₂ for 12 h. The resulting mixture was poured into 1N NaOH and extracted with CH₂Cl₂, the extract washed with 1N NaOH, H₂O, and brine, dried, and evaporated, and the residue subjected

to CC (AcOEt/hexane 1:4): **9a** (330 mg, 83.4 %). IR: 2964, 2929, 2878, 2381, 1660, 1447, 1380, 1362, 1301, 1261, 1194, 1131, 1078, 1044, 877, 826. 1 H-NMR: 1.63 (s, 3 H); 1.60 – 1.69 (m, 2 H); 1.92 – 2.04 (m, 2 H); 2.15 – 2.40 (m, 3 H); 2.60 – 2.65 (m, 1 H); 2.96 (br. s, 1 H); 4.28 (AA'BB', J = 17.1, 2 H,); 5.31 (s, 1 H); 6.09 (s, 1 H). 13 C-NMR: 23.2 (t); 23.4 (q); 30.5 (t); 34.6 (d); 35.3 (d); 40.9 (t); 63.4 (t); 122.6 (d); 123.6 (d); 134.7 (s); 168.2 (s); 200.0 (s). EI-MS: 193 (15, [M + 1] $^{+}$), 192 (77, M +), 174 (86), 164 (65), 159 (40), 146 (62), 133 (65), 132 (46), 131 (98), 117 (54), 105 (82), 91 (100), 79 (71), 77 (54), 55 (57). HR-MS: 192.1151 (M +, C_{12} H $_{16}$ O $_{2}^{+}$; calc. 192.1151).

 $\begin{array}{l} (4aR,8aS)-4a,5,6,8a\text{-}Tetrahydro-7\text{-}methyl-4\text{-}\{[(methylsulfonyl)oxy]methyl\}naphthalen-2(1H)-one \\ \textbf{(9b)}. A soln. of \textbf{9a} (300 mg, 1.6 mmol) and Et_3N (400 mg, 4.0 mmol) in THF (10 ml) at 0° under N_2 was stirred for 20 min. Then MsCl (300 mg, 2.6 mmol) was added. After 2 h, the mixture was diluted with H₂O and extracted with Et₂O. The org. layer was washed with H₂O and brine, dried, and evaporated: \textbf{9b} (400 mg, 94.8%). IR: 2924, 2858, 2360, 2324, 1456, 1339, 1265, 1087, 968. ^1H-NMR: 1.66 (s, 3 H); 1.82-1.85 (m, 2 H); 1.99-2.08 (m, 2 H); 2.24-2.29 (m, 1 H); 2.37-2.47 (m, 2 H); 2.65-2.69 (m, 1 H); 3.06 (s, 3 H); 4.83 (AA'BB', J=14.4, 2 H); 5.34 (s, 1 H); 6.06 (s, 1 H). ^13C-NMR: 22.9 (t); 23.3 (q); 30.3 (t); 34.4 (d); 35.0 (d); 38.0 (q); 40.7 (t); 68.1 (t); 123.2 (d); 126.0 (d); 134.9 (s); 158.1 (s); 198.5 (s). EI-MS: 270 (0.5, <math>M^+$), 174 (100), 159 (43), 146 (59), 133 (41), 132 (30), 131 (98), 117 (38), 105 (36), 91 (39). HR-MS: 270.0920 (M^+ , C₁₃H₁₈O₄S⁺⁺; calc. 270.0927).

(3S,4aS,8aR)-3,4,4a,7,8,8a-Hexahydro-3-hydroxy-6-methylnaphthalene-1-methanol α-Methanesulfonate. To a stirred soln. of **9b** (100 mg, 0.37 mmol) in MeOH (1 ml) at 0° was added NaBH₄ (50 mg, 1.32 mmol) in 3 portions. After 10 min, the mixture was allowed to warm to r.t. for 1 h, quenched with H₂O, extracted with Et₂O , dried, and evaporated: reduction product of **9b** (80 mg, 79.4%). IR: 3424, 2929, 2863, 1673, 1455, 1377, 1193, 1105, 1041. ¹H-NMR: 1.18–1.32 (m, 2 H); 1.55 (s, 3 H); 1.70–1.84 (m, 3 H); 1.89–1.96 (m, 1 H); 2.01–2.10 (m, 2 H); 2.97 (br. s, 1 H); 3.18 (s, 3 H); 3.63 (d, J=12.0, 1 H); 3.97 (d, J=12.0, 1 H); 4.12–4.16 (m, 1 H); 5.21 (s, 1 H,); 5.59 (s, 1 H). ¹³C-NMR: 23.3 (q); 23.7 (t); 30.6 (t); 33.3 (d); 34.0 (d); 35.3 (t); 57.4 (q); 67.2 (d); 74.3 (t); 124.8 (d); 129.4 (d); 133.9 (s); 139.6 (s). EI-MS: 177 (5, [M-Ms]⁺), 176 (32), 145 (68), 143 (77), 129 (60), 107 (49), 105 (64), 95 (28), 93 (51), 91 (100), 79 (71), 77 (61), 41 (37).

(1aR, 3aS, 7aR, 7bS)-1,1a,3,3a,6,7,7a,7b-Octahydro-5-methyl-7b-{[(methylsulfonyl)oxy]methyl}-2H-cyclopropa[a]naphthalene-2-one (**11**). A soln. of **10** (40 mg, 0.14 mmol) and Dess-Martin periodinane (100 mg, 0.23 mmol) in CH₂Cl₂ (5 ml) was stirred at r.t. under N₂ for 24 h. Then the mixture was poured into 1N NaOH and extracted with CH₂Cl₂, the extract washed with 1N NaOH, H₂O, and brine, dried, and evaporated, and the residue subjected to CC (AcOEt/hexane 1:2): **11** (35 mg, 88.1%). ¹H-NMR: 0.94-0.99 (m, 1 H); 1.13 (t, J=4.8, 1 H); 1.19-1.27 (m, 1 H); 1.40-1.50 (m, 1 H); 1.59 (s, 3 H); 1.65-1.70 (m, 1 H); 1.86-2.02 (m, 4 H); 2.18-2.26 (m, 1 H); 2.38-2.43 (m, 1 H); 2.96 (d, J=10.5, 1 H); 3.26 (s, 3 H); 3.36 (d, J=10.5, 1 H); 5.09 (s, 1 H). ¹³C-NMR: 17.4 (t); 23.2 (t); 23.4 (q); 30.6 (t); 31.2 (d); 31.6 (d); 36.1 (s); 38.9 (d); 39.2 (t); 58.7 (d); 78.8 (t); 123.3 (d); 135.5 (s); 209.8 (s).

(1S,4R)-4-Isopropenyl-1-methylcyclohex-2-en-1-yl 2-Methylpropanoate (13). Et₃N (20 ml), DMAP (0.20 g, 1.64 mmol), and isobutyric anhydride (15.6g, 98.60 mmol) were mixed with a soln. of 4 (5.0 g, 32.89 mmol) in CH₂Cl₂ (20 ml) under N₂. After stirring at r.t. for 2 d, the mixture was poured into sat. NaHCO₃ soln., and washed in sequence with 1N aq. ethane-1,2-diamine (to facilitate removal of excess anhydride), 1N HCl, H₂O, and brine. The org. soln. was dried and evaporated: 13 (7.23 g, 99%). $[\alpha]_D = -41.9$ (c = 0.25, CHCl₃). IR: 3485, 3447, 2973, 2937, 2875, 1731, 1470, 1449, 1386, 1372, 1273,

1189, 1159, 1098, 1068, 893, 863, 847, 742. 1 H-NMR: 1.00 (s, 3 H); 1.02 (s, 3 H); 1.44 (s, 3 H); 1.59 (s, 3 H); 1.62–1.65 (m, 3 H); 2.00–2.05 (m, 1 H); 2.31–2.35 (m, 1 H); 2.61–2.63 (m, 1 H); 4.65 (s, 2 H); 5.57 (d, J=10.2, 1 H); 6.12 (d, J=10.2, 1 H). 13 C-NMR: 18.4 (g); 18.6 (g); 19.8 (g); 23.9 (t); 25.3 (g); 34.2 (d); 35.2 (t); 43.2 (d); 76.3 (s); 110.3 (t); 130.4 (d); 132.9 (d); 147.4 (s); 175.4 (s).

2-[(IS,6R)-6-Isopropenyl-3-methylcyclohex-2-en-1-yl]-2-methylpropanoic Acid (14). To a soln. of LDA, prepared from Pr₂NH (5.80 g, 57.32 mmol) and 1.6M BuLi (28 ml, 44.8 mmol) at 0° in anh. THF (40 ml), a soln. of 13 (5.0 g, 22.52 mmol) in THF (40 ml) was added during 15 min at -78° under N₂. After 1 h, the temp. was raised and kept at -40° for 30 min. On recooling to -78° , Me₃SiCl (4.3 ml, 33.88 mmol) was added, the resulting mixture allowed to attain r.t., and the solvent evaporated. The residue was heated to reflux in dry toluene (90 ml) under N₂ for 36 h, cooled, and poured into 5% HCl soln. The aq. phase was extracted with CH₂Cl₂, the combined org. phase evaporeted, and the residue dissolved in 1N NaOH and washed with Et₂O. Acidification, extraction with CH₂Cl₂, drying, and evaporation gave 14 (3.40 g, 68%). [α]_D = +59.9 (c = 0.125, CHCl₃). IR: 2970, 2929, 2652, 2362, 1698, 1474, 1450, 1373, 1280, 1166, 940, 891, 740. ¹H-NMR: 1.18 (s, 3 H); 1.19 (s, 3 H); 1.67 (s, 3 H); 1.76 (s, 3 H); 1.81 – 2.02 (s, 4 H); 2.36 (s, 1 H); 4.79 (s, 2 H); 5.45 (s, 1 H). ¹³C-NMR: 21.9 (s); 23.7 (s); 24.3 (s); 25.7 (s); 26.0 (s); 29.3 (s); 42.8 (s); 43.1 (s); 45.7 (s); 112.6 (s); 121.2 (s); 135.9 (s); 142.7 (s); 185.1 (s). EI-MS: 222.1617 (s), 136 (72), 134 (100), 110 (55), 109 (51), 107 (96), 93 (89), 91 (50), 79 (47), 41 (63). HR-MS: 222.1617 (s), s0.

2-[(IS,6R)-6-Isopropenyl-3-methylcyclohex-2-en-1-yl]-2-methylpropan-1-ol (15). To a stirred suspension of LiAlH₄ (1.16 g, 30.53 mmol) in THF (30 ml) was added slowly a soln. of 14 (3.40 g, 15.32 mmol) in anh. THF (30 ml). The mixture was refluxed for 5 h, cooled, quenched with sat. NH₄Cl soln., and extracted with Et₂O. The org. layer was washed with brine, dried, and evaporated: 15 (2.87 g, 90%). $[\alpha]_D = +49.0$ (c=0.25, CHCl₃). IR: 3409, 2962, 2928, 1715, 1644, 1455, 1376, 1261, 1041, 889, 801, 742. 1 H-NMR: 0.87 (s, 3 H); 0.91 (s, 3 H); 1.61 (s, 3 H); 1.76 (s, 3 H); 1.81–2.01 (m, 4 H); 2.14 (s, 1 H); 2.38–2.41 (m, 2 H); 3.31–3.43 (m, 2 H); 4.77 (d, J=1.8, 1 H); 4.79 (d, J=1.8, 1 H); 5.45 (s, 1 H). 13 C-NMR: 22.9 (q); 23.1 (q); 23.7 (q); 24.2 (q); 27.6 (t); 28.2 (t); 39.0 (s); 41.6 (d); 43.8 (d); 70.7 (t); 112.1 (t); 122.5 (d); 134.8 (s); 148.6 (s). EI-MS: 208 (10, M^+), 207 (100), 133 (56), 93 (42), 63 (56), 55 47), 43 (68), 41 (50). HR-MS: 208.1826 (M^+ , C_{14} H₂₄O $^+$; calc. 208.1828).

(4aR,8aS)-4a,5,6,8a-Tetrahydro-1,1,4,7-tetramethylnaphthalen-2(1H)-one (**16**). PCC (14.50 g, 67.28 mmol) was added to a stirred soln. of **15** (2.8 g, 12.61 mmol) in dry CH₂Cl₂ (100 ml) at r.t. After 24 h, the mixture was diluted with dry Et₂O (150 ml) and the supernatant liquid was percolated through a short pad of *Florisil*, with Et₂O to wash the residue. After evaporation, a soln. of the crude product and TsOH·H₂O (0.30 g) in dry benzene (100 ml) was refluxed for 1.5 h. Extractive workup followed by CC (AcOEt/hexane 1:9) afforded **16** (1.21g, 44.1%). [a]_D = -8.0 (c = 0.25, CHCl₃). IR: 2966, 2930, 2872, 1677, 1446, 1382, 1261, 1095, 1019, 866, 801, 737. 1 H-NMR: 1.02 (s, 3 H); 1.11 (s, 3 H); 1.59 (s, 3 H); 1.66–1.75 (m, 2 H); 1.88–1.95 (m, 2 H); 1.89 (s, 3 H); 2.39 (s, 1 H); 2.53 (s, 1 H); 5.27 (s, 1 H); 5.71 (s, 1 H). 13 C-NMR: 21.5 (g); 22.5 (g); 23.8 (g); 24.5 (g); 24.6 (t); 28.1 (t); 37.6 (s); 44.5 (d); 45.0 (d); 119.4 (d); 125.7 (d); 136.3 (s); 160.0 (s); 204.4 (s). EI-MS: 204 (81, M⁺), 189 (52), 95 (88), 91 (42), 43 (54), 41 (100), 39 (58). HR-MS: 204.1517 (M⁺, C₁₄H₂₀O⁺; calc. 204.1515).

(8'aS)-3',5',6',8'a-Tetrahydro-1',1',4',7'-tetramethylspiro[1,3-dioxolane-2,2'(1H)-naphthalene] (17a). A mixture of 16 (1.0 g, 4.90 mmol), ethylene glycol (2.7 g, 43.55 mmol), and TsOH · H₂O (30 mg) in benzene (30 ml) was refluxed under a *Dean–Stark* trap for 24 h. The mixture was cooled, poured into H₂O, and extracted with Et₂O. The combined extract was washed with 10% NaHCO₃ soln. and brine, dried, and evaporated: 17a (1.12 g, 92.1%). [a]_D = -12.1 (c =0.25, CHCl₃). IR: 2970, 2903, 2880, 2727, 1447, 1380, 1216, 1162, 1107, 1086, 1047, 976, 948, 847, 769. 1 H-NMR: 0.72 (s, 3 H); 0.93 (s, 3 H); 1.62 (s, 3 H); 1.67 (s, 3 H); 1.92–1.98 (m, 4 H); 2.24 (d, J =18.3, 1 H); 2.64–2.68 (m, 1 H); 2.83 (s, 1 H); 3.83–4.00 (m, 4 H), 5.27 (s, 1 H); 13 C-NMR: 18.2 (q); 18.8 (q); 19.0 (q); 23.7 (q); 26.4 (t); 31.2 (t); 39.5 (t); 40.6 (s); 46.1 (d); 65.0 (t); 65.4 (t); 111.9 (s); 121.1 (s); 121.2 (d); 128.9 (s); 135.3 (s). EI-MS: 247 (2, [M –1] $^+$), 161 (28), 87 (30), 86 (51), 44 (58), 43 (100), 41 (35).

(8aS)-1,2,3,5,6,8a-Hexahydro-1,1,4,7-tetramethylnaphthalen-2(1H)-one (17b). A 35% aq. CF₃COOH soln. (10 ml) was added to a vigorously stirred soln. of 17a (1.12 g, mmol) in CH₂Cl₂ (20 ml) at $10-20^{\circ}$. After 48 h, the mixture was diluted with Et₂O and poured into an ice-cooled NaHCO₃ soln. The org. phase was washed with brine, dried, and evaporated: 17b (910 mg, 98.8%). $[a]_D = -70.4$ (c = 0.25,

CHCl₃). IR: 2969, 2871, 2840, 1715, 1446, 1382, 1264, 1188, 1128, 853, 724. 1 H-NMR: 0.89 (s, 3 H); 1.10 (s, 3 H); 1.67 (s, 3 H); 1.73 (s, 3 H); 1.92–1.97 (m, 3 H); 2.63–2.66 (m, 1 H); 2.67–2.70 (m, 1 H); 2.83 (s, 1 H); 2.97 (d, d = 6.8, 1 H); 5.24 (s, 1 H). 13 C-NMR: 17.9 (d); 19.8 (d); 20.5 (d); 23.9 (d); 26.2 (d); 30.3 (d); 44.0 (d); 47.3 (d); 119.4 (d); 121.3 (d); 129.0 (d); 137.8 (d); 214.7 (d). EI-MS: 204 (61, d), 134 (100), 119 (65), 95 (69), 91 (47). HR-MS: 204.1510 (d), d0, d1, d1, d1, d2, d3, d4, d5, d5, d6, d9, 91 (47).

(4aS,7R)-1,2,4a,5,7,8-Hexahydro-3,5,5,9-tetramethyl-7-(trimethylsilyl)-6H-benzocyclohepten-6-one (18b). To a stirred soln. of 17 (0.60 g, 2.94 mmol) and BF₃· OEt₂ (0.4 ml, 3.16 mmol) in dry CH₂Cl₂ (15 ml) was added 2M Me₃SiCHN₂ in toluene (1.6 ml, 3.2 mmol) at -40° under N₂. After 2.5 h, H₂O was added, the org. soln. washed with brine, dried, and evaporated, and the residue subjected to CC (AcOEt/hexane 1:30): 18b (0.41 g, 48.1%) and 18a (0.11 g, 17.2%). 18b: $[\alpha]_D = -97.4$ (c = 0.15, CHCl₃). IR: 2963, 2908, 2727, 1695, 1464, 1447, 1378, 1247, 1096, 1051, 1031, 864, 838, 693, 615. ¹H-NMR: 0.02 (s, 9 H); 0.84 (s, 3 H); 1.09 (s, 3 H); 1.56 (s, 3 H); 1.71 (s, 3 H); 1.78–1.91 (m, 3 H); 2.08 (dd, J = 16.5, 10.8, 1 H), 2.50–2.67 (m, 2 H); 2.94 (t, J = 9.9, 1 H); 3.58 (s, 1 H); 5.37 (s, 1 H). ¹³C-NMR: -2.6 (g); 17.7 (g); 20.9 (g); 23.1 (g); 24.0 (g); 27.0 (t); 30.1 (t); 35.0 (t); 35.1 (d); 44.0 (d); 55.2 (s); 118.7 (d); 126.8 (s); 132.0 (s); 136.5 (s); 218.1 (s). EI-MS: 290 (5, M^+), 185 (52), 170 (39), 143 (30), 73 (60), 43 (100), 41 (53), 32 (75). HR-MS: 290.2073 (M^+ , C₁₈H₃₀OSi⁺; calc. 290.2067).

 $(4a\mathrm{S})$ -2,4a,5,6,7,8-Hexahydro-3,5,5,9-tetramethyl-6H-benzocyclohepten-6-one (18a). A mixture of 18b (0.25 g, 0.86 mmol) and 1 M Bu₄NF (1.7 ml, 1.7 mmol) in MeCN (10 ml) was stirred at r.t. for 3 h. After evaporation, the residue was subjected to CC (AcOEt/hexane 1:30): 18a (0.11 g, 58.5%). [α]_D = -86.1 (c=0.10, CHCl₃). IR: 2966, 2927, 2910, 2728, 1706, 1465, 1448, 1381, 1248, 1081, 851. ¹H-NMR: 0.88 (s, 3 H); 1.15 (s, 3 H); 1.63 (s, 3 H); 1.71 (s, 3 H); 1.84-2.00 (m, 3 H); 2.10-2.16 (m, 1 H); 2.22-2.30 (m, 1 H); 2.56-2.58 (m, 1 H); 2.64-2.68 (m, 1 H); 3.04-3.13 (m, 1 H); 3.33 (s, 1 H); 5.37 (s, 1 H). ¹³C-NMR: 18.8 (g); 20.2 (g); 23.9 (g); 24.2 (g); 26.1 (t); 30.1 (t); 30.8 (t); 36.2 (t); 43.8 (d); 53.6 (s); 118.6 (d); 127.4 (s); 132.7 (s); 136.6 (s); 215.5 (s). EI-MS: 218 (3, M⁺⁺), 119 (24), 105 (36), 91 (14), 55 (30), 43 (100), 41 (72), 39 (30), 32 (82). HR-MS: 218.1669 (M⁺, C₁₃H₂₂O⁺⁺; calc. 218.1671).

(4aS,6S,7R)-2,4a,5,6,7,8-Hexahydro-3,5,5,9-tetramethyl-7-(trimethylsilyl)-1H-benzocyclohepten-6-ol (19). To a stirred soln. of 18b (0.16 g, 0.55 mmol) in EtOH (2 ml) was added NaBH₄ (0.20 g, 5.28 mmol) in portions during 5 min. After 36 h at r.t., the reaction was quenched with H₂O and the mixture extracted with Et₂O. Drying, evaporation, and CC (AcOEt/hexane 1:30) gave 19 (0.14 g, 86.9%). [α]_D=62.2 (c=0.15, CHCl₃). IR: 3564, 2960, 2905, 1448, 1404, 1383, 1247, 1078, 1036, 995, 864, 834, 746. ¹H-NMR: 0.01 (s, 9 H); 0.89 (s, 3 H); 0.94 (s, 3 H); 1.41–1.44 (m, 1 H); 1.70 (s, 3 H); 1.72 (s, 3 H); 1.83–2.02 (m, 5 H); 2.61–2.78 (m, 2 H); 3.08 (s, 1 H); 3.47 (d, J=12.0, 1 H); 5.34 (s, 1 H). ¹³C-NMR: -2.59 (g); 20.3 (g); 21.1 (g); 24.0 (g); 24.9 (d); 26.3 (t); 27.8 (g); 30.3 (t); 30.9 (t); 41.9 (s); 44.7 (d); 80.9 (d); 121.4 (d); 128.7 (s); 134.6 (s); 135.1 (s). EI-MS: 292 (t, t), 137 (67), 134 (38), 91 (43), 75 (38), 73 (100). HR-MS 292.2223 (t).

(+)- β -Himachalene (= (4aR)-2,4a,5,6,7,8-Hexahydro-3,5,5,9-tetramethyl-1H-benzocycloheptene; **2**) from **18a**. To a stirred soln. of **18a** (100 mg, 0.46 mmol) in MeOH (1 ml) was added NaBH₄ (50 mg, 1.32 mmol) at 0°. After 1 h, H₂O was added, the mixture extracted with Et₂O, dried, and evaporated. The obtained crude alcohol was directly mixed with DMAP (5 mg) in pyridine (1 ml) under N₂, cooled to 0°, and treated with MsCl (0.1 ml, 1.29 mmol). On removal of the ice-bath, stirring was continued for 6 h. Then the mixture was poured into ice-water and extracted with CH₂Cl₂ and the org. layer washed twice with 10% HCl soln., sat. NaHCO₃, and brine, dried, and evaporated: mesylate.

Li-Wire (80 mg, 11.53 mmol) was added to anh. liq. NH₃ (15 ml) at -78° , and the mixture was stirred until the Li metal was completely dissolved. A soln. of the mesylate (see above) in THF (3 ml) was added dropwise. The mixture was stirred for 1 h and then quenched by solid NH₄Cl (600 mg, 11.21 mmol). Upon evaporation of the NH₃, the mixture was partitioned between H₂O and Et₂O, the aq. layer extracted with Et₂O, the combined org. phase dried and evaporated, and the residue subjected to CC (hexane): **2** (42 mg, 44.9% over 3 steps). [α]_D = +212.3 (c = 0.05, CHCl₃). IR: 2962, 2911, 2853, 2726, 1646, 1447, 1376, 1361, 1187, 1155, 859, 814. ¹H-NMR: 0.71 (s, 3 H); 0.95 (s, 3 H); 1.35 – 1.58 (m, 4 H); 1.65 (s, 3 H); 1.69 (s, 3 H); 1.83 – 1.95 (m, 4 H); 2.38 – 2.45 (m, 1 H); 2.60 – 2.62 (m, 1 H); 2.87 (s, 1 H); 5.40 (s, 1 H). ¹³C-NMR: 20.2 (q); 21.4 (t); 23.7 (q); 24.1 (q); 26.0 (t); 29.2 (q); 30.2 (t); 34.0 (t); 34.6 (t); 45.1 (t); 46.1 (t); 122.5 (t); 129.1 (t); 131.2 (t); 131.2 (t). HR-MS: 204.1876 (t). 133 (41), 121 (43), 119 (100), 105 (40), 93 (24), 91 (36), 55 (20), 41 (50). HR-MS: 204.1876 (t).

(+)-β-Himachalene (2) from 20. To a soln. of 20 (30 mg, 0.15 mol) and CoCl₂·6H₂O (36 mg, 0.15 mmol) in EtOH (1 ml) under N₂ at 0° was added NaBH₄ (6 mg, 0.15 mmol). The soln. immediately became dark with evolution of H₂. The mixture was stirred under N₂ at r.t. for 24 h and poured into 3n HCl soln. The aq. soln. was extracted with Et₂O, the Et₂O layer was dried and evaporated, and the residue subjected to CC (hexane): 2 (22 mg, 72.6%). [α]_D=+213 (α =-20.05 CHCl₃) ([4]:[α]_D=+224.7 (CHCl₃); [5]:[α]_D=+204 (CHCl₃)).

REFERENCES

- T.-L. Ho, 'Enantioselective Synthesis. Natural Products from Chiral Terpenes', John Wiley & Sons, New York, 1992.
- [2] T.-L. Ho, K.-Y. Lee, Tetrahedron Lett. 1995, 36, 947.
- [3] T.-L. Ho, R.-J. Chein, J. Chem. Soc., Chem. Commun. 1996, 1147.
- [4] T. C. Joseph, S. Dev, Tetrahedron Lett. 1961, 216; T. C. Joseph, S. Dev, Tetrahedron 1968, 24, 3809.
- [5] J. B. Bredenberg, H. Erdtman, Acta Chem. Scand. 1961, 15, 685.
- [6] J. B. Hendrickson, Tetrahedron 1959, 7, 216.
- [7] E. Wenkert, K. Naemura, Synth. Commun. 1973, 3, 45.
- [8] W. Oppolzer, R. L. Snowden, Helv. Chim. Acta 1981, 64, 2592.
- [9] D. A. Evans, D. H. B. Ripin, J. S. Johnson, E. A. Shaughnessy, Angew. Chem., Int. Ed. 1997, 36, 2119.
- [10] B. D. Challand, G. Kornis, G. L. Lange, P. deMayo, J. Chem. Soc., Chem. Commun. 1967, 704; B. D. Challand, H. Hikino, G. Kornis, G. L. Lange, P. deMayo, J. Org. Chem. 1969, 34, 794.
- [11] E. Piers, E. H. Ruediger, J. Chem. Soc., Chem. Commun. 1979, 166; E. Piers, E. H. Ruediger, Can. J. Chem. 1983, 61, 1239.
- [12] H.-J. Liu, E. C. Browne, Can. J. Chem. 1981, 59, 601.
- [13] H. Kuczynski, A. Zabza, Rocz. Chem. 1963, 37, 773.
- [14] T. Kametani, H. Kurobe, H. Nemoto, J. Chem. Soc., Chem. Commun. 1980, 762.
- [15] E. J. Corey, R. D. Balanson, Tetrahedron Lett. 1973, 3153.
- [16] J. H. Rigby, C. Senanayake, Org. Synth. 1988, 53, 440.
- [17] E. J. Corey, D. L. Boger, Tetrahedron Lett. 1978, 2461.
- [18] F. Alonso, I. Mico, C. Najera, J. M. Sansano, I. Gracia, Tetrahedron 1995, 51, 10259.
- [19] P. F. Hudrlik, A. M. Hudrlik, R. N. Misra, D. Peterson, G. P. Withers, A. K. Kulkani, J. Org. Chem. 1980, 45, 4444.

Received July 11, 2005